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Abstract - This paper showsthat divide-and-conquerderivesa
minimum sum-of-products expression(MSOP) of functions that
have an AND bi-decomposition when at least one of the sub-
functions is orthodox. This extends a previous result show-
ing that divide-and-conquer derives the MSOP of the AND bi-
decompositionof two orthodox functions. We showthat divide-
and-conquer does not always produce an MSOP when neither
function is orthodox. However, our experimental results show
that, in this case, it derives a near minimal SOP. At the same
time, our approach significantly reducesthe time neededto find
an MSOP or near minimal SOP. Also, we extend our results to
functions that havea tri-decomposition.

I . INTRODUCTION

Let function f have the decompositionf
�
X1 � X2 ��������� Xm���

g
�
h1
�
X1 �	� h2

�
X2 �
��������� hm

�
Xm ��� , whereXi andXj (i � j) aredis-

joint. A sum-of-productsexpression(SOP)for f canbe de-
rived by substitutinga minimum sum-of-productsexpression
(MSOP) for hi

�
i � 1 � 2 ��������� m� and its complement,asappro-

priate,into anMSOPfor g, andthenapplyingthedistributive
law. This processis denotedasdivide-and-conquer. In this
paper, we seekconditionsunderwhich theresultingSOPis an
MSOP. Fig. 1.1 shows thecircuit associatedwith divide-and-
conquer.

A specific type of decompositionholds special interest.
Function f hasan AND (OR) bi-decompositionif f can be
written as f

�
X1 � X2 ��� h1

�
X1 ��� h2

�
X2 � , whereX1 andX2 are

disjoint setsof variablesand � is the AND (OR) operation.
Many benchmarkfunctions have either an AND or OR bi-
decomposition[12].

Functionswith anORbi-decompositionareespeciallyinter-
esting,sincea minimumsum-of-productsexpression(MSOP)
for f

�
X1 � X2 ��� h1

�
X1 ��� h2

�
X2 � is obtained as H1

�
X1 ���

H2
�
X2 � , whereH1

�
X1 � andH2

�
X2 � aretheMSOP’s for h1

�
X1 �

andh2
�
X2 � , respectively. In this case,divide-and-conqueral-

ways producesan MSOP. As a result, the computationtime
is short. That is, if �X1 � is nearly the sameas �X2 � , the time
to find H1

�
X1 � and H2

�
X2 � separatelyis typically much less

thanthetimeto find theMSOPof f
�
X1 � X2 ��� h1

�
X1 ��� h2

�
X2 � .

This follows from thefact thatthetime to optimizeanSOPof
an n-variablefunctionwhoseMSOPhast productsis at least
O
�
nt2 � .
If f hasanAND bi-decomposition,f � h1

�
X1 � h2

�
X2 � , it is

temptingto believethatanMSOPfor f is obtainedby ANDing
theMSOPsfor h1

�
X1 � andh2

�
X2 � followedby theapplication

of thedistributive law. However, this is only known to holdfor

thecasewhereh1
�
X1 � andh2

�
X2 � arebothorthodoxfunctions.

Namely, anorthodoxfunction f hasthepropertythat

τ
�
f ��� η

�
f �
�

whereτ
�
f � is the numberof producttermsin an MSOPof f

and η
�
f � is the numberof true mintermsof f in the maxi-

mumindependentsetof f ; i.e. a largestsetMIS of minterms
with the property that no prime implicant of f covers two
mintermsin MIS. If h1

�
X1 � and h2

�
X2 � are both orthodox,

thena fastminimizationexists for h1
�
X1 � h2

�
X2 � , namelymin-

imize h1
�
X1 � andh2

�
X2 � separatelyandapply the distributive

law to derive an MSOPfor h1
�
X1 � h2

�
X2 � . This propertyand

its relation to fast minimization was first shown in [11]. It
hasbeenincorporatedinto theMUSAHI logic minimizer [6],
whichsuccessfullyderivesexactminimumSOPsfor functions
whereESPRESSOfails dueto memoryoverflow. In thispaper,
we extendthis by showing thatan MSOPfor a functionwith
an AND bi-decompositioncan be obtainedin the sameway
if exactly oneof h1

�
X1 � andh2

�
X2 � is orthodox. Further, we

show thatno definitive statementcanbe madewhenbothare
non-orthodox,althoughexperimentsshow that,for mostcases,
thedistributive law is not sufficient for deriving an MSOPof
h1
�
X1 � h2

�
X2 � .

We also extend the theory to derive the MSOPsfor tri-
decomposablefunctions. This paperis organizedasfollows.
SectionII outlinesthe notationused. The sectionafter that
shows theresultscitedabove. Thenext sectiondiscussesnew
resultson tri-decomposition.SectionIV shows experimental
results,andSectionV givesconcludingremarks.

h1

h2

hm

g

X1

X2

Xm

 f ( )X1 X2 Xm, ,...,

Fig. 1.1. Functiondecompositionassociatedwith divide-and-conquer.

I I . NOTATION

Definition 2.1 x andx̄ are literals of variablex. TheAND of
literals is an implicantI of f , if f is 1 whenI is 1.

Definition 2.2 A prime implicantPI of a function f is an im-
plicantof f , such that thedeletionof anyliteral in PI causesit
not to bean implicantof f .
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Definition 2.3 An irredundant sum-of-products expression
(ISOP)F

�
X � of function f

�
X � is theORof PIs of f

�
X � , such

that f
�
X ��� F

�
X � andnoPI canbedeletedfromF

�
X � without

changingthefunctionrepresentedby F
�
X � .

Definition 2.4 AmongtheISOPsfor f
�
X � , onewith thefewest

PIs is a minimumSOPor MSOP.

Example2.1 x̄1x3 � x2x̄3 � x1x̄2 and x̄1x3 � x̄1x2 � x1x̄3 � x1x̄2

are bothISOP’sof thesamefunction,but only theformeris an
MSOP. (Endof Example)

Definition 2.5 Let τ
�
f � bethenumberof PIs in an MSOPfor

f .

Example2.2 For f � x̄1x3 � x2x̄3 � x1x̄2, τ
�
f ��� 3.

(Endof Example)

Theexamplesweuseto illustratetheconceptsincludesym-
metricfunctions.
Definition 2.6 Sn

A, a (totally ) symmetric function, is 1 if mof
its n variablesare 1, where m � A andis 0 otherwise.

Example2.3 TheAND and OR functionson n variablesare
symmetricand representedby Sn�

n� and Sn�
1 � 2 � � � � n� , respec-

tively. Also, x̄1x3 � x2x̄3 � x1x̄2 � S3
1� 2 � x1 � x2 � x3 � . Themajor-

ity function MAJ
�
x1 � x2 � x3 � is given as x1x2 � x1x3 � x2x3 �

S3
2� 3 � x1 � x2 � x3 � . (Endof Example)

I I I . ORTHODOX FUNCTIONS

As discussedin the previous section, minimization of
an SOP is easier when a function f has an AND bi-
decomposition,andan MSOPis formedby applyingthe dis-
tributive law to theSOPsof thecomponentfunctions.

A. IndependentSetsof Minterms

Definition 3.1 Givena function f
�
X � , let M

�
f � be the setof

true mintermsfor f . Then,IND
�
f ��� M

�
f � is an indepen-

dent setof minterms of f iff no PI of f coversmore thanone
mintermin IND

�
f � .

Definition 3.2 Given a function f , MIS
�
f � denotesa maxi-

mum independent set of minterms. η
�
f � is the numberof

elementsin MIS
�
f � .

Example3.1 Symmetricfunction f � S3�
1� 2� � x1 � x2 � x3 � has

two maximum independent sets of minterms�
x̄1x̄2x3 � x̄1x2x̄3 � x1x̄2x̄3  and

�
x1x2x̄3 � x1x̄2x3 � x̄1x2x3  . Thus,

η
�
f ��� 3. (Endof Example)

Definition 3.3 Givena function f
�
X � , let M

�
f � be the setof

true mintermsfor f . Then,DIS
�
f �!� M

�
f � is a setof distin-

guishedminterms if exactlyonePI of f coverseach minterm
in DIS

�
f � .

Example3.2 SymmetricfunctionS3�
1 � 2 � � x1 � x2 � x3 � hasno dis-

tinguishedmintermsbecauseeverymintermis coveredby two
PIs. However, S3�

1� 2� 3� � x1 � x2 � x3 ��� x1 � x2 � x3 hasthreedis-
tinguishedminterms,̄x1x̄2x3 � x̄1x2x̄3 � x1x̄2x̄3. (Endof Example)

For a function f covered only by essentialPIs, η
�
f �"��DIS

�
f � � . In general,η

�
f ��# �DIS

�
f � � .

B. RelationshipBetweenMSOPs and IndependentSets of
Minterms

Lemma 3.1 [11]
τ
�
f �$# η

�
f �
� (1)

Lemma 3.2 [11] Let IND
�
h1 � be an independentset of

minterms of h1
�
X1 � and IND

�
h2 � be an independentset

of minterms of h2
�
X2 � . Then, IND

�
h1 �&% IND

�
h2 � is

an independentset of minterms for h1
�
X1 � h1

�
X2 � , where

IND
�
h1 ��% IND

�
h2 � is the AND of all mintermsin IND

�
h1 �

with all mintermsin IND
�
h2 � .

Definition 3.4 A function f is orthodox iff

τ
�
f ��� η

�
f �
�

Otherwise,f is non-orthodox.

Example3.3 Symmetric function f � S3�
1� 2� � x1 � x2 � x3 �'�

x1x̄2 � x2x̄3 � x3x̄1 is orthodox,since

τ
�
f ��� η

�
f ��� 3 �

(Endof Example)

Theorem 3.1 [11] Let h1
�
X1 � andh2

�
X2 � beorthodox,where

X1 andX2 are disjoint setsof variables.Then,h1
�
X1 � h2

�
X2 � is

orthodox.

Next, we derive a new theoremthat extendsthis. Specifi-
cally, weshow thataminimalSOPis achievableusingonly the
distributive law even if we replacethe requirementthat both
functionsbeorthodoxwith thelessrestrictive requirementthat
atleastonebeorthodox.Thissuggeststhatthefastalgorithmis
extendedto a muchlargerclassof functions,sinceexperimen-
tal resultsshow thatorthodoxfunctionsrepresentavanishingly
smallfactionof all functionsasn increases[11].

Theorem 3.2 Let H1
�
X1 � betheMSOPof a nontrivial ortho-

doxfunctionh1
�
X1 � , andlet H2

�
X2 � betheMSOPof a nontriv-

ial non-orthodoxfunctionh2
�
X2 � , whereX1 andX2 aredisjoint

setsof variables.Then,anMSOPfor h1
�
X1 � h2

�
X2 � is obtained

byapplyingthedistributivelaw to H1
�
X1 � H2

�
X2 � .

Proof On the contrary, supposethat there exists an MSOP
MFG

�
X1 � X2 � for h1h2, where τ

�
h1h2 �"( τ

�
h1 � τ � h2 � . Let

MIS
�
h1 � be a maximumindependentsetof h1. Let )ai be an

assignmentthat correspondsto a mintermin MIS
�
h1 � . Then,

MFG
� )ai � X2 � representsthe function h2

�
X2 � . This is because

h1
� )ai �*� 1 andtheMFG

�
X1 � X2 � representsh1

�
X1 � h2

�
X2 � . Let

thenumberof productsin MFG
� )ai � X2 � beti .

Thereareη
�
h1 � differentwaysto assign )ai. Note that for

different )ai, differentproductsin MFG
�
X1 � X2 � remain,since

h1
�
X1 � is non-trivial (not a constant1). Further, ∑η + h1 ,

i - 1 ti �
τ
�
MFG

�
X1 � X2 �.� . Note that, τ

�
MFG

�
X1 � X2 �.�/( τ

�
h1 � τ � h2 � .

Also, τ
�
h1 �$� η

�
h1 � , sinceh1 is orthodox.

By thePigeonholePrinciple[4], thereexistsat leastoneas-
signment)ai suchthat ti ( τ

�
h2
�
X2 ��� . But, this is a contradic-

tion, sincesuchan assignmentproducesan SOPfor h2
�
X2 �

with fewer productsthanτ
�
h2
�
X2 ��� .



Corollary 3.1 Let exactly oneof h1
�
X1 � or h2

�
X2 � be ortho-

dox,where X1 andX2 are disjoint setsof variables.Then,

τ
�
h1
�
X1 � h2

�
X2 �.�$� τ

�
h1
�
X1 �.� τ � h2

�
X2 ���	�

We canextendour result to bi-decompositionsbesidesAND
andOR.

Theorem 3.3 Supposethat the given function f has a bi-
decompositionf

�
X1 � X2 �0� g

�
h1
�
X1 �
� h2

�
X2 ��� , where X1 and

X2 are disjoint setsof variables. If h1, h2, and their comple-
mentsare orthodox,thenan MSOPfor f canbederivedfrom
theMSOPsfor g, andh1, h2 andtheir complementsusingthe
distributivelaw only.

This shows that divide-and-conquersucceedsfor all two-
variablefunctionsg whenthe functionshi andtheir comple-
mentsareorthodox.

C. Classesof FunctionsThatAre Orthodox

Thefollowing summarizesfunctionsthatareorthodox[11].

TABLE 3.1
SUMMARY OF FUNCTIONS THAT ARE ORTHODOX.

Function

Unate(includesthreshold)
Symmetric
All functionson lessthanfour variables

D. FurtherResults

Definition 3.5 Let )a and )b be assignmentsof valuesto vari-
ablesX. Function f

�
X � is positiveiff f

� )a�!# f
� )b� , whenever

)a # )b.

Theorem 3.4 Let f be representedas f
�
X1 � X2 ��������� Xm���

g
�
h1
�
X1 �	� h2

�
X2 �
��������� hm

�
Xm ��� , where hi are orthodox,

g
�
y1 � y2 ��������� ym� is positive,and X1, X2, ... , and Xm are pair-

wisedisjoint. Then,g
�
h1
�
X1 �
� h2

�
X2 �	��������� hm

�
Xm �.� is orthodox.

Proof Let P � yi1yi2 ����� yik be a prime implicant of g. Then
thereexist η

�
hi1 � η � hi2 �	����� η � hik � independentmintermsfor f .

A methodto find suchmintermsis shown in Example3.5.Let
t be the total numberof suchmintermsfor all the PIs for g.
Notethatthey form anindependentsetof mintermsof f . Thus,
anMSOPfor f requiresat leastt PIs.

On theotherhand, f canbe representedby theSOPwith t
PIs.This is becausesubstitutingMSOPsfor hi into theMSOP
for g, andthenapplyingthedistributive law producesanSOP
with t products,sinceτ

�
hi �$� η

�
hi � . This implies thatτ

�
f �*�

η
�
f � .

Corollary 3.2 Let f be representedas f
�
X1 � X2 ��������� Xm���

g
�
h1
�
X1 �	� h2

�
X2 �
��������� hm

�
Xm ��� , where hi are orthodox,g is pos-

itive, andX1, X2, ... , andXm are pairwisedisjoint. Then,an
MSOPfor f can be obtainedby substitutingthe MSOPsfor
hi
�
Xi � into G

�
y1 � y2 ��������� ym� , andapplyingthedistributivelaw.

Example3.4 Considerthe casewhere g
�
y1 � y2 � y3 ��� y1y2 �

y2y3 � y3y1. Here, f
�
X1 � X2 � X3 �1� g

�
h1
�
X1 �	� h2

�
X2 �
� h3

�
X3 ���

containsη
�
h1 � η � h2 ��2 η

�
h2 � η � h3 ��2 η

�
h3 � η � h1 � independent

minterms. Also, it is clear that substitutingMSOPsfor h1,
h2 and h3 into the MSOP for g

�
y1 � y2 � y3 � and then apply-

ing the distributive law producesan SOPwith τ
�
h1 � τ � h2 �32

τ
�
h2 � τ � h3 ��2 τ

�
h3 � τ � h1 � products. Note that τ

�
hi �4� η

�
hi � .

This meansthat the MSOPfor g
�
h1
�
X1 �	� h2

�
X2 �	� h3

�
X3 �.� has

τ
�
h1 � τ � h2 �52 τ

�
h2 � τ � h3 �62 τ

�
h3 � τ � h1 � products.

(Endof Example)

Example3.5 Let g
�
y1 � y2 � y3 �4� y1y2 � y2y3 � y3y1, and let

h1
�
x1 � x2 � x3 ��� h2

�
x1 � x2 � x3 ��� h3

�
x1 � x2 � x3 ��� h

�
x1 � x2 � x3 ���

x1x̄2 � x2x̄3 � x3x̄1. In this case,τ
�
h�1� η

�
h�7� 3. An MIS

for h1
�
x1 � x2 � x3 � is

�
x̄1x2x3 � x1x̄2x3 � x1x2x̄3  . For simplicity,

we denote this by
�
011� 101� 110  . Consider the function

f
�
X1 � X2 � X3 ��� g

�
h1
�
X1 �
� h2

�
X2 �
� h3

�
X3 �.� . Then,a set of in-

dependentmintermsis

111-011-011 111-011-101 111-011-110
111-101-011 111-101-101 111-101-110
111-110-011 111-110-101 111-110-110

011-111-011 011-111-101 011-111-110
101-111-011 101-111-101 101-111-110
110-111-011 110-111-101 110-111-110

011-011-111 011-101-111 011-110-111
101-011-111 101-101-111 101-110-111
110-011-111 110-101-111 110-110-111

Thereare27mintermsin theset.Notethatthey aremutually
independent,asfollows.

A setof all the prime implicants(PIs) of the positivefunc-
tion g

�
y1 � y2 � y3 � formsan MSOP. Notethat theliterals of a PI

of g are uncomplemented.If a variable yi appearsas an un-
complementedliteral in a PI, assigna mintermof the MIS of
hi
�
Xi � . If a variableyi is missingin a PI, assignanyminterm

in thecomplementfunctionof hi
�
Xi � .

First considera PI of g: y2y3. For x1, x2 and x3, we as-
sign a minterm111, sincey1 is missingin y2y3. For x4, x5

andx6, we assigna minterm011or 101or 110,sincey2 ap-
pearsasa positiveliteral in y2y3. For x7, x8 andx9, weassign
a minterm011or 101or 110, sincey3 appearsas a positive
literal in P. Thus,for a PI y2y3, we have9 different assign-
ments. They are mintermsof f . Also, they are independent
each other. For example,111-011-011and 111-011-101are
independent.On thecontrary, supposethat there is a PI that
coversbothminterms,thenit covers111-011-**1,where * de-
notesa don’t care,while- is a delimiter. Thisimplies111-011-
111 is a mintermof f , which contradicts the definitionof f ,
sinceg(0,1,0)=0.

Next, considertwo PIs of g: y2y3 and y1y2, Also consider
twoindependentsetsof mintermsfor them.Selectoneminterm
fromy2y3 and anothermintermfrom y1y2. Supposethat they
are 111-011-011and 011-111-011.We claim that thesetwo
mintermsare mutuallyindependent.On thecontrary, suppose



TABLE 3.2
POSSIBLE VARIABLES IN A PRODUCT TERM OF THE MAJ FUNCTION.

X1 X2 X3 Comment

Impossible8
Impossible8
Impossible8 88
Impossible8 88 88 8 8
Impossible

that there is a PI thatcoversbothminterms,thenit covers*11-
*11-011. This implies111-111-011is a mintermof f , which
contradictsthedefinitionof f , sinceg

�
0 � 0 � 1�9� 0.

In this way, wecan showthat these27 mintermsare mutu-
ally independent. (Endof Example)

WecanextendTheorem3.4by relaxingtherequirementthat
all subfunctionsmustbeorthodoxin thecaseof aspecificpos-
itive function,MAJ

�
y1 � y2 � y3 � .

Lemma 3.3 Let H1
�
X1 � , H2

�
X2 � , and H3

�
X3 � be the MSOP

of functionsh1
�
X1 � , h2

�
X2 � , and h3

�
X3 � , respectively, where

X1, X2, and X3 are pairwise disjoint setsof variables. As-
sume at least two are orthodox. Then, an MSOP for
MAJ

�
h1
�
X1 �
� h2

�
X2 �	� h3

�
X3 ��� is derivedfromH1

�
X1 � H2

�
X2 �:�

H1
�
X1 � H3

�
X3 �;� H2

�
X2 � H3

�
X3 � , using the distribu-

tivelaw. Further, τ
�
MAJ

�
h1
�
X1 �	� h2

�
X2 �	� h3

�
X3 ���.��� τ

�
h1
�
X1 ���

τ
�
h2
�
X2 ���<2 τ

�
h1
�
X1 �.� τ � h3

�
X3 �.�:2 τ

�
h2
�
X2 ��� τ � h3

�
X3 ��� .

Proof Table 3.2 shows the situation with respectto vari-
ables in a prime implicant of M of the MSOP of
MAJ

�
h1
�
X1 �
� h2

�
X2 �	� h3

�
X3 ��� . Since the AND of two func-

tions, at least one of which is orthodox, on disjoint sets
of variablesare orthodox,we can concludethat MSOPsfor
H1
�
X1 � H2

�
X2 � , H1

�
X1 � H3

�
X3 � , andH2

�
X2 � H3

�
X3 � canbe ob-

tainedby thedistributivelaw. It remainstoshow thatanMSOP
for MAJ

�
h1
�
X1 �	� h2

�
X2 �	� h3

�
X3 �.� is derivedasH1

�
X1 � H2

�
X2 ���

H1
�
X1 � H3

�
X3 �:� H2

�
X2 � H3

�
X3 � . On thecontrary, assumeit is

not,andthereis anotherISOP, M, thatis anMSOP.
Considera prime implicant in M. A checkin Table3.2 in-

dicatesthat at leastonevariableexists in M from the group
designatedby theheading.Thefirst row, containingno check,
correspondsto a producttermwith no variables.Thus,this is
an”Impossible”situation,asindicatedby thecommentin the
fourth column. Thecasein which only variablesfrom X3 oc-
cur, the secondrow, is also Impossible. This is so, because,
for this productterm,variablesin X1 andX2 canbechosenso
thath1

�
X1 � andh2

�
X2 � are0. Thus,no matterwhat variables

areincludedfrom X3, the function is 0 for someassignments
of valuessuchthat the productterm is 1. It follows that the
producttermis not an implicant of the function. Similarly, it
is impossibleto have variablesjust from X1 andjust from X2.

Thelastrow of Table3.2correspondsto a producttermthat
hasat leastonevariablefrom eachsetX1, X2, andX3. For this
productterm,it mustbethatat leasttwo of thethreefunctions,

h1
�
X1 � , h2

�
X2 � , andh3

�
X3 � are1; otherwisethefunctionis not

1. Suppose,h1
�
X1 � andh2

�
X2 � are1. Then,we caneliminate

variablesfrom h3 andthefunctionis still 1. It followsthatsuch
variablesare redundant,andthe productterm is not a prime
implicant.Thus,thiscaseis impossible.

Of theremainingfour possibilities,considera termthathas
variablesor theircomplementsfrom X2 andX3, andnonefrom
X1. It mustbethatvalueswhichmaketheproductterm1, also
causeh2

�
X2 � and h3

�
X3 � to be 1. On the contrary, if either

H2
�
X2 � or H3

�
X3 � are0, variablesfrom X1 canbe chosenso

that thefunction is 0. Thus,the termis not a productterm. It
followsthataproducttermof thefunctioncontainingvariables
from X2 andX3 only is alsoa producttermof H2

�
X2 � H3

�
X3 � .

A similar argumentapplieswhen the product term hasvari-
ablesonly from X1 andX2 or from X1 andX3. Thisprovesthat
an implicant of the function must be an implicant of exactly
one of H1

�
X1 � H2

�
X2 � , H1

�
X1 � H3

�
X3 � , and H2

�
X2 � H3

�
X3 � .

It follows that if the SOP derived from H1
�
X1 � H2

�
X2 ���

H1
�
X1 � H3

�
X3 ��� H2

�
X2 � H3

�
X3 � is not an MSOP, thenat least

oneof H1
�
X1 � X2

�
X2 � , H1

�
X1 � H3

�
X3 � , andH2

�
X2 � H3

�
X3 � is not

anMSOP, a contradiction.τ
�
MAJ

�
h1
�
X1 �
� h2

�
X2 �	� h3

�
X3 ���.�*�

τ
�
h1
�
X1 �.� τ � h2

�
X2 ���=2 τ

�
h1
�
X1 ��� τ � h3

�
X3 ���=2 τ

�
h2
�
X2 ���

τ
�
h3
�
X3 �.� follows directly from this.

Note that we don’t actually require h1
�
X1 � , h2

�
X2 � , and

h3
�
X3 � to be orthodox. Rather, we require only that

the SOPsderived from H1
�
X1 � H2

�
X2 � , H1

�
X1 � H3

�
X3 � , and

H2
�
X2 � H3

�
X3 � beMSOPs.Thus,Lemma3.3appliesto alarger

classof functions.

Definition 3.6 f is a positivecascadefunctionif f canberep-
resentedas

f
�
x1 � x2 ������� xn ��� x1 � 1

�
x2 � 2

� ����� � xn > 1 � n> 1xn �.������� �	� (2)

where � i is eithertheOR( � ) or AND ( ? ) function.
Wecanconclude

Lemma 3.4 TheMSOPof a positivecascadefunctioncanbe
obtainedby recursivesubstitutioninto (2) andthedistributive
law only.

Definition 3.7 A function f
�
X � is a positivefanout-fr eefunc-

tion iff it canberealizedby a circuit where each gaterealizes
eitherAND or ORandwhere each gateoutputdrivesat most
onegateinput or thecircuit output.

NotethatMAJ
�
y1 � y2 � y3 � is notapositive fanout-freefunction.

Lemma 3.5 TheMSOPof a positivefanout-freefunctioncan
be obtainedby recursivesubstitutionand thedistributive law
only in theexpressionfor thefanout-freecircuit.

Definition 3.8 A functionf
�
X � isunate iff it is a constantor is

representableasan SOPin which each variableappearsonly
complementedor only uncomplemented.

Lemma3.5 canbe extendedto unatefanout-freefunctions.
A unatefunctionis formedfrom apositivefunctionbycomple-
mentingzero,one,or morevariablesand/orthefunctionitself.
For example,x̄1, x1 � x̄2, x1, andx1 � x2 areunatefunctions.
Thelasttwo functionsarepositive. FromLemma2 of [2], any



unatefanout-freecircuit realizesa function that is also real-
ized by a positive fanout-freecircuit with zero,one,or more
variablescomplemented.Thus,the MSOPof a unatefanout-
freefunction f

�
X � canbederivedfrom theunderlyingpositive

fanout-freefunction f
�
X � , asspecifiedin Lemma3.5. Thus,

we canstate

Lemma 3.6 TheMSOPof a unatefanout-freefunctioncanbe
obtainedbyrecursivesubstitutionandthedistributivelaw only
in the expressionfor the fanout-free circuit, where inverters
canappearonly on theinput.

Lemma 3.7 Let H1
�
X1 � and H2

�
X2 � be the MSOPsof non-

constantfunctionsh1
�
X1 � and h2

�
X2 � , respectively, where X1

andX2 aredisjointsetsof variables.Letm
�
y� X1 � X2 � bea MUX

functionsuch thatm � h1
�
X1 � ȳ � h2

�
X2 � y. Then,anMSOPfor

h is obtainedby substitutingH1
�
X1 � into f andH2

�
X2 � into g

andapplyingthedistributivelaw.

Proof A primeimplicantPof m � h1
�
X1 � ȳ � h2

�
X2 � y is aprime

implicantof h1
�
X1 � ȳ or h2

�
X2 � y andmustcontainthe literal ȳ

or y, respectively. Removing the literal y yields a prime im-
plicant P@ of h1

�
X1 � or h2

�
X2 � . From this, it follows that the

MSOPhasat leastτ
�
h1
�
X1 ���<2 τ

�
h2
�
X2 �.� PIs.

IV. TRI-DECOMPOSITION

Definition 4.1 f is a tri-decomposableiff f is representedas

f
�
X1 � X2 � X3 ��� g

�
h1
�
X1 �	� h2

�
X2 �
� h3

�
X3 �.�	� (3)

A naturalextensionto bi-decomposition,tri-decomposition
hasspecialmerit becausecertainchoicesfor g occuroften in
logic design,for example,themajority functionandthemulti-
plexer.

Theorem 4.1 Let f betri-decomposedas

f
�
X1 � X2 � X3 ��� g

�
h1
�
X1 �	� h2

�
X2 �
� h3

�
X3 �.�	� (4)

Let hi andh̄i
�
I � 1 � 2 � 3� beorthodox.

1) If g
�
y1 � y2 � y3 �A� ȳ1ȳ2ȳ3 � y1y2y3 then τ

�
f �A�

τ
�
h̄1 � τ � h̄2 � τ � h̄3 �:2 τ

�
h1 � τ � h2 � τ � h3 � . Also, f is orthodox.

2) If g
�
y1 � y2 � y3 �B� ȳ1y2 � y1y3 then τ

�
f �C� τ

�
h̄1 � τ � h2 ��2

τ
�
h1 � τ � h3 � . Also, f is orthodox.

3) If g
�
y1 � y2 � y3 �B� ȳ1y2y3 � y1ȳ2y3 � y1y2ȳ3 then τ

�
f �C�

τ
�
h̄1 � τ � h2 � τ � h3 �D2 τ

�
h1 � τ � h̄2 � τ � h3 �D2 τ

�
h1 � τ � h2 � τ � h̄3 � .

Also, f is orthodox.

4) If g
�
y1 � y2 � y3 �E� y1ȳ2ȳ3 � y2y3 then τ

�
f �E�

τ
�
h1 � τ � h̄2 � τ � h̄3 �:2 τ

�
h2 � τ � h3 � . Also, f is orthodox.

In all cases,MSOPsfor f arederivedby substitutingMSOPs
for hi

�
Xi � andh̄i

�
Xi � into yi andȳi andapplyingthedistributive

law.
Supposethat the given function f hasa tri-decomposition

f
�
X1 � X2 � X3 ��� g

�
h1
�
X1 �
� h2

�
X2 �	� h3

�
X3 ��� , whereX1 ,X2 andX3

are mutually disjoint. Also assumethat h1, h2, h3 and their
complementsareall orthodox.

In this case,Theorem4.1 shows that for many functionsg,
anMSOPfor f canbederivedfrom theMSOPsfor g, andh1,
h2, h3 andtheircomplementsusingthedistributive law only.

Thereare 28 � 256 different functionsof threevariables.
Among them,38 functionsaredegenerate,that is, dependon
two or fewer variables.Also 9 arepositive functions,and64
areunatefanout-freeaswell asunatecascadefunctions. The
numberof three-variable functionsthat are neither, positive,
fanout-free,norP-equivalentto thefunctionsg in Theorem4.1
is only 76. Thus,in many functions,divide-and-conquerpro-
ducesanMSOP.

V. EXPERIMENTAL RESULTS

An experimentwas conductedto determinethe extent to
which divide-and-conquerminimizesfunctionswith an AND
bi-decomposition.Namely, we have shown thatit is anattrac-
tive methodwhenat leastone function is orthodox. On the
otherhand,we know that thedistributive law fails to produce
anMSOPfor specificnon-orthodoxfunctions[11]. Theextent
of this failurehasbeenanopenquestionup to thispoint.

To investigatethis, we formed a set S of 67 randomly
generated6-variable nonorthodoxfunctions. For each, we
found theMSOP, usingthe Quine-McCluskey (QM) method.
Then, we produced2278 12-variable functions of the form
f
�
X1 � X2 ��� f1

�
X1 � f2 � X2 � , where f1

�
X1 � and f2

�
X2 � arecho-

sen from S. Specifically, eachfunction f
�
X1 � X2 � occursas

oneof the F 67
2 G 2 67 � 2278waysto chooseanunorderedpair

from S. Then,we found the MSOPof each f
�
X1 � X2 � , using

the QM algorithmandcomparedit with the sum-of-products
expressionobtainedby applyingthelaw of distributivity to the
productof the MSOPsfor f

�
X1 � and f

�
X2 � . For eachpair,

wecomputeδ
�
f � , which is theabsoluteerrorusingthedivide-

and-conquermethod, i.e., the differencebetweenthe num-
ber of productsin an MSOPandthe SOPderived by divide-
and-conquer. For example,a valueδ

�
f
�
X1 � X2 �.��� 0, means

that the divide-and-conquermethodyields an MSOP, while
δ
�
f
�
X1 � X2 ����� 1 meansthedivide-and-conquermethodyields

asum-of-productsexpressionwith onemoreproducttermthan
theMSOP.

Amongthe2278pairsof functions,wefoundthat0 H δ H 4.
Thenumberof pairswhereδ � 4, 3, 2, 1, and0 is 2, 9, 198,
1053,and994,respectively. For 22 of thefunctions,excessive
computationtime neededfor the derivation of the MSOPfor
thecompositefunction f

�
X1 � X2 �3� f1

�
X1 � f � X2 � precludedthe

computationof δ.
Fig. 5.1 shows the valueof δ for all pairsof functionsin

S. The two horizontalaxes eachrepresentindiceson the 67
randomfunctions,while the vertical axis shows the valueof
δ whenthefunctionindexedby onehorizontalaxis is ANDed
with thefunctionindexedby theotherhorizontalaxis.Thedi-
agonalextendingfrom (1,1) to (67,67)representsfunctionsin
S ANDed with themselves. BecauseAND is commutative, a
function above this diagonalis identical to onebelow it, and
theresultingδ valuesaresymmetricaboutthisdiagonal.Some
valuesof δ are missing becauseof prohibitive computation
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Fig. 5.1. Distribution of excessproducttermsoverMSOPwhen
divide-and-conquer is appliedto non-orthodoxfunctions.

time,asmentionedabove.
The indicesof the functionswerechosenso that functions

that tendedto producesmallerδ hada larger index. With this
choice,it is clear that thereappearto be functionsthat tend
to produceδ � 0 whencombinedin a bi-decompositionwith
anyotherfunction.This suggeststheexistenceof functionsin
additionto orthodoxfunctionsthatyield anMSOPwhencom-
binedin a bi-decompositionwith any other function. Within
the 67 randomlychosenfunctions,16 produceδ � 0 in a bi-
decompositionwith all 67 functions.

VI . CONCLUDING REMARKS

In this paper, we have shown that divide-and-conqueris a
goodheuristic. This follows directly from δ

�
f ��� 0 whenat

mostoneof thetwo functionsis orthodox,andfrom thesmall
δ whenneitheris orthodox.

Our techniquecansignificantly reducethe time neededto
find an MSOP. The conceptsdiscussedhave beenused to
improve MUSASHI logic minimizer [6], which cansuccess-
fully derive exact minimum SOPsfor functions on which
ESPRESSOfails due to memory overflow. For example,
ESPRESSO[1] attemptsto derive theMSOPof f � x1x2x3 �
x4x5x6 �DI�I�IJ� x97x98x99 by first finding the complementof f .
It consistsof 333 implicantsandis impossibleto derive; i.e.,
ESPRESSOfails. On the otherhand,MUSASHI just returns
the input SOPas an MSOP. It is a sum of disjoint support
functions.So,eachcomponentfunctioncanbeminimizedin-
dependently. Also, considerthe function g � �

x1 � x2 � � x3 �
x4 � � x5 � x6 ��I�I�I � x39 � x40 � . ESPRESSOfails sincethenumber
of productsis 220 and requirestoo much computationtime,
while MUSASHI generatesits MSOPeasily.

Thereis an interestingopenquestion.Namely, what char-

acterizesthosefunctions for which divide-and-conquersuc-
ceedsin finding the MSOP of functions with an AND bi-
decomposition.From prior experiments[11], it appearsthat
orthodoxfunctionsform a vanishinglysmall subsetof all n-
variablefunctionsasn K ∞. Thus,if thecharacteristicis tied
to theorthodoxproperty, thissuggeststhata vanishinglysmall
numberof AND bi-decomposablefunctionscan usedivide-
and-conquerto find anMSOP. However, from theexperiments
presentedhere,divide-and-conquersometimessucceedswhen
bothfunctionsarenon-orthodox.
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